PHYSICS 411-0 CLASSICAL MECHANICS

Ian Low, Winter 2010

Course Webpage: http://www.hep.anl.gov/ian/teaching/CM/CM_Winter10.html

ASSIGNMENT #3

Due at 2 PM, February 1st

Reading Assignments:

Chapter 3 of Goldstein's book.

Problem 1

- (a) Consider a 1-body problem with a central potential U(r) = kr. Write down the equation of motion in the radial direction in terms of L the angular momentum of the system.
- (b) Use (a) to find the conditions on the initial velocities \dot{r} and $\dot{\theta}$ in order to have a circular orbit of radius r_0 .

(Hint: a circular orbit exists if the equation of motion admits a solution with $\ddot{r}=0$.)

(c) By considering a small perturbation around the circular orbit, determine whether or not the motion is stable. If it is stable, find the oscillation frequency.

Problem 2

(a) Solve for the potential energy V, the kinetic energy K, and the total energy E of a circular orbit with radius R in the Newtonian potential explicitly. Show that the virial theorem is satisfied:

$$E = \frac{1}{2}V = -K \ .$$

(b) Use the virial theorem in (a) to resolve the following satellite paradox:

The effect of the slight atmospheric drag on a satellite in a circular orbit at a height of several hundred kilometers above the earth is to increase the speed of the stellite.

Problem 3

Problem 3.14 in Goldstein's.

Problem 4

Problem 3.19 in Goldstein's.

Problem 5

Problem 3.28 in Goldstein's.